skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Pankratov, Denis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pankratov, Denis (Ed.)
    Given a set $$P$$ of $$n$$ points in the plane, and a parameter $$k$$, we present an algorithm, whose running time is $$O(n^{3/2} \sqrt{k}\log^{3/2} n + kn\log^2 n)$$, with high probability, that computes a subset $$Q* \subseteq P$$ of $$k$$ points, that minimizes the Hausdorff distance between the convex-hulls of $Q*$ and $$P$$. This is the first subquadratic algorithm for this problem if $$k$$ is small. 
    more » « less
  2. Pankratov, Denis (Ed.)
    In the clustering with neighborhoods problem one is given a set S of disjoint convex objects in the plane and an integer parameter k ≥ 0, and the goal is to select a set C of k center points in the plane so as to minimize the maximum distance of an object in S to its nearest center in C. Previously [HKR21] showed that this problem cannot be approximated within any factor when S is a set of disjoint line segments, however, when S is a set of disjoint disks there is a roughly 8.46 approximation algorithm and a roughly 6.99 approximation lower bound. In this paper we investigate this significant discrepancy in hardness between these shapes. Specifically, we show that when S is a set of axis aligned squares of the same size, the problem again is hard to approximate within any factor. This surprising fact shows that the discrepancy is not due to the fatness of the object class, as one might otherwise naturally suspect. 
    more » « less